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Abstract Radiative heat transfer in the laminar boundary layer flow of an absorbing, emitting
and anisotropically scattering gray fluid over a flat plate, with the surface of the plate reflecting
radiation in diffuse-cum-specular fashion is analyzed. The discrete ordinates method is used to
model the radiative transfer. The governing dimensionless momentum and energy equations, in
the form of a partial differential system, are solved by a finite difference method. The effect of
various pavameters like, emittance, the degree of anisotropy in scattering, scattering albedo and
the nature of surface reflection on the total heat flux from the plate to the fluid are studied and
results are presented.

Nomenclature
¢ = gpecific heat of the fluid at Q = dimensionless heat flux = ¢/
constant pressure, J/kg—K 4'7T4x
f = dimensionless stream function T = temperature, K
as defined by equation (7) T, = flat plate temperature, K
g = acceleration due to gravity, T = fluid free stream temperature,
m/sec?, dimensionless intensity K
function u, v = x and y direction velocity
LD = black body radiation intensity, components respectively, m/s
W/m?-sr X,y = coordinates respectively in the
I'(r, 1, &) = radiation intensity for positive parallel and perpendicular
values of p, W/m?=sr directions of the plate, m
I'(7, —p, &) = radiation intensity for negative
values of i, W/m?-sr
k = thermal conductivity, W/m-K Greek symbols
L = characteristic length, m o = thermal diffusivity = &/pc, m%/s
N, = conduction-radiation number = (3 = extinction coefficient = x + ~,
kBl4c TS, m’
pu, ) = slab scattering phase function 5 = emittance of plate surface
Dp) = single-scattering phase ~ = scattering coefficient, m™
function K = absorption coefficient, m™
International Journal of Numerical ~ T = Prandtl number = V/ a 1 = oS¢
I\V/I(ffhfg} f(?fSH;gB 5& Flu;‘ioféf:g q = heat flux, W/m? v = kinematic viscosity, m*/s
© MOB University brese 00615530 e = Reynolds number, u,x/v w = scattering albedo = v/



= density, kg/m®
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p = polar angle, angle between the
o° = diffuse reflectance of plate radiation vector and the y-axis
surface =1 -¢ — p° = dimensionless temperature =
o° = diffuse reflectance of plate TITs
surface =1 -¢ — pd =T,/Ts
o = Stefan-Boltzmann constant, = dimensionless distance as
W/m?-K* defined by equation (5)
T = optical depth of the medium at = dimensionless axial distance as
y defined by dr = SBdy defined by equation (6)
Introduction

Radiative heat transfer plays an important role in many engineering
applications involving external flows like, atmospheric re-entry, ablative
cooling, metalized solid rocket, shock waves, etc. The interaction of radiation
with laminar forced convection from a flat plate was modeled by Taitel and
Hartnett (1966) for an absorbing and emitting fluid employing exact
formulation for the radiative transfer. The analysis including isotropic
scattering has been described in the book by Ozisik (1973) in which the
radiation part is solved exactly using the normal mode expansion technique.
Yiicel et al. (1989) used the P5 spherical harmonics method to solve the
radiation part of the problem while investigating the boundary layer flow of a
non-gray, absorbing and emitting radiating fluid. Most of the work on the
interaction of radiation with convection in external flow fields is concerned
either with absorbing and emitting medium or at most isotropic scattering
medium in the case where the scattering effect was considered. The analysis
discussing anisotropic scattering and reflecting plate surface has not been
reported earlier. The complicated partial differential and integro-differential
systems defining the governing equations are extremely difficult to solve, they
prompted various approximations in the past to make the problem amenable to
a solution (Ozisik, 1973). The objective of the present paper is to investigate the
effects of the degree of anisotropy in radiation scattering and the nature of
reflection (fully diffuse, fully specular, or diffuse-cum-specular) of radiation
from the plate surface, on the heat flux when combined laminar forced
convection and radiation takes place from a heated flat plate to an absorbing,
emitting and anisotropically scattering fluid. The discrete ordinates method is
used to solve accurately the radiation part of the problem. The partial
differential system defining the governing dimensionless momentum and
energy equations is solved by a finite difference method.

Mathematical model

Figure 1 illustrates the flow configuration. A radiatively absorbing, emitting
and scattering gray fluid at a free stream temperature 7., and velocity u.,
flows over an isothermal gray flat plate at temperature T,,. Heat is transferred
from the plate to the fluid by a combined mode of forced convection and
radiation. The net conduction heat transfer in the x-direction is neglected
assuming the Peclet number u,L/a >> 1. It is also assumed that there is no



HFF radiative flux in the x-direction by incorporating the condition of large

105 radiation Peclet number, i.e. 38pcyunL/160T” >> 1 (Sparrow and Cess, 1978).

’ The governing equations for a steady, two-dimensional, laminar boundary
layer flow are as follows (Ozisik, 1973):

Continuity equation
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Equations (1)-(3) are subject to the boundary conditions:

u=v=0 at  y=0 (4a)
U= at y— 0 (4b)
T="T, at  y=0 (4c)
T="T, at x=0and y— oo (4d)

The above system of partial differential equations are now transformed into a
new system of equations by introducing the following variables:
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Flow configuration
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¢ is the dimensionless axial distance, characterizing the relative importance of
radiation over convection. v is the stream function whose partial derivatives
yield the x and v velocity components as

o(x,) _ OP(x,y)

“= oy v= ox ®

Substitution of the above variables in equation (1)-(3) leads to the following
transformed equations.

af 1 dzf_
+ fd—772_

ar T2 0 ©)

10% 1,0f df 00  OQ
prop T2 00~ antoe T o 1)

The transformed boundary conditions derived from equation (4) are:

of
==—=0 at n=0 1la
f = n (11a)
%f =1 at n— o0 (11b)
=1 at 1=0 (11c)
=0, at n— oo (11d)
0=60y at £€=0 (11e)

where 6, is the solution to the pure convection problem when there is no
radiation.

Radiative flux calculation

The radiative transfer equation describing the intensity variation for an
absorbing, emitting, scattering, gray, semi-infinite medium, plane-parallel
(perpendicular to the y-axis) may be written as (Ozisik, 1973)
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oI, ) + 107, 1,6) = (1~ B[T(r, )

/pu, (1,1, §)dp

The boundary conditions are

1
10, 1, €) = <ly(Ty) + 25 /0 10, 1, Opdp + P10, —,€), p>0 (13)

[(T:OO,—;L,f):I(T:OO,;L,é') (14)

The optical depth variable 7 is defined as dr = (3dn. The relation between 7,
and ¢ is given as (Ozisik, 1973)

T=nVEN, Pr (15)

Equation (14) means that at 7(or 7) = oo, the radiative flux vanishes. For
numerical computations oo is represented by Tomax = Mmax(EN; Pr)"2, where Mnax
is a sufficiently large value representing the edge of the boundary layer. In the
subsequent paragraphs, the variable ¢ is omitted while showing the variable
I(7, i, &), for brevity sake, because we are only concerned with the evaluation of
intensity at a particular £ station.

The discrete ordinates method (DOM) (Modest, 1993) is used to transform
the integro-differential equation (12) into a system of coupled linear ordinary
differential equations (ODESs). We follow the implementation of DOM employed
by Love and Grosh (1965). For convenience, /(r, p) is separated into a forward
component I(r,u), pw€ (0, 1) and a backward component I(r,—pu),
u € (0, 1) and an m-point Gauss-Legendre numerical quadrature rule is applied
to evaluate the scattering integral in equation (12) for each component. This
produces a system of 2 ODEs in the form:

[ .
A | 1) = (- BT ()

o (16)
5 D wilb i 1)1 (7, 1) + g, =) (7, =)
=1
—u@ 1, —pw) = (1= ) [T(7)]
a7

gz (i =) T (75 ) + b Cpti, 1)1 (5 = 145)]
=1

where w;, 11;, 1 = 1, m are the weights and abscissas of the quadrature rule.



The quadrature rule is applied to the boundary conditions equations (13)-(14)
also

m
1(0, 1) = ely(T) + 20" Y " wipsl (0, =) + p1(0, — ) (13)
=1

](Tmax’ _,Ufi) = I(Tnlaxa /Ji) (19)

Equations (16)-(19) constitute a boundary value problem of ODEs with 2m
unknowns. We convert this into two initial value problems for ODEs of size m
each, one for the forward component {/(0, y,), ¢ = 1,m} and the other for the
backward component {/(7, —p,), ¢ = 1,m}. First a distribution for /(r, —p;) at a
number of equidistant points in the interval (0 — 7,,,4,) 1S assumed and the initial
values /(0, ;) are calculated from equation (18) and the resulting initial value
problem for I(7, 11;) (defined by equations (16) and (18)) is integrated forward
from 7 =0 to 7 = 7,,,,,. After obtaining /(7,,,., 1) the initial values for (7,4, — 14;)
are evaluated from equation (19) and the initial value problem defined by
equations (17) and (19) for I(r, — p,) is integrated backward from 7 = 7,,,, to 7 = 0.
The procedure is repeated until convergence is achieved for I(r, —u;) and
I(r,— ;) at all 7 points considered. We use a fixed step size Crank-Nicolson (CN)
semi-implicit scheme for the numerical solution of the ODE. Higher order
implicit rules would give better accuracy, however for the present problem the
simple and stable CN scheme has been found to be sufficient. The CN method
for the present problem needs the inversion of two m-order matrices, but this
needs to be done only once in the beginning of the procedure and can be reused
later in all steps and iterations. The iterative scheme described earlier to solve
the discrete ordinates equations is tailored with the Ng-acceleration scheme
described by Auer (1987) to speed up convergence.
Equation (10) contains the divergence of the radiative flux as the last term.
This may be evaluated as (Modest, 1993)
L IR (20)

Where g(n) is the dimensionless incident radiation function evaluated from the
radiation intensity distribution /(7 (7, 1) as (Modest, 1993):

T 1 T "
g(n) = m/_lf(f(n), w)dp = @; will(T(n), 1) o)

+I(7(n), =)l

The dimensionless radiative heat flux ¢ may now be obtained as:
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r 1
Q=2 i / I(7, p)pdp

T 4oTL T 20TL ),
(22)

m
m
= 20T: Z wj“f[[(T, /J’]') - [(Ta _Mj)]
w j=1

The total heat flux at the wall is the sum of the convective and radiative
contributions and is given as

oT
b=k + 7] 23
T [ oy T4 . (23)

A local Nusselt number may now be defined to represent the total heat flux
from the wall to the fluid as:

_ 4
N = g s (24)
Substitution of equations (23) in (24) results in:
Nu 1 00 EPr
—= —=+ Q 25
VRe 0u—1 [ o \'N (25)

Numerical scheme

Solution of the differential system equations (9) and (10) along with the
boundary conditions equation (11) obtains the velocity and temperature profile
within the boundary layer. Since the flow field is independent of the
temperature, the dimensionless momentum equation, equation (9) is decoupled
from the energy equation, equation (10). The solution of equation (9) is, however,
available in standard textbooks (Kays and Crawford, 1993). Finite differencing
in the £ variable converts equation (10) into a two-point boundary value problem
in ordinary differential equations (ODEs) in the independent variable ». Simple

finite differencing is used, ie. 20| = %= 91 o ©zisik, 1994
ok |, AL

This makes the ODEs at every &, station involve the 6 values at the previous
¢ station. The resulting two-point boundary value problem is solved using a
finite difference method by replacing the derivatives with respect to the
variable n with a second order difference scheme (Ozisik, 1994). This leads to a
non-linear algebraic system, with the nodal temperatures as the unknowns,
whose solution was found using the Newton-Raphson method. The value
Nmax = 20 was found to be sufficient for the # profile to approach 6.
asymptotically. Forty equispaced grid points along the ) variable were used for
calculations. Along the £ direction a nonuniform grid spacing starting with A¢
= 0.01 increasing in a geometrical progression by a factor of 1.1 at every



succeeding grid was used. These grid parameters were found to give
satisfactory solution such that no further grid refinement was actually called
for. The converged 6 solution from the previous ¢ station was used as the initial
guess to the current £ station and the procedure was iterated until convergence,
le. the maximum norm of the vector of relative temperature differences
between two succeeding iterations is within 1 x 1072

Results and discussion

The results for black plate and unscattering medium, calculated using the exact
formulation for 0¢)/0r, is illustrated in Figure 2 together with the DOM results.
Both the results are in excellent agreement and also they compare well with the
exact results of Zamuraev (1964) as presented by Modest (1993, Figure 20-14, p.
736), thus rendering validation of the present numerical algorithm. Also for £ =
0, i.e. for pure convection problem, the value of Nu/Re'? calculated was 0.332,
which tallies exactly with that quoted in literature (Kays and Crawford, 1993).
The DOM algorithm for the radiation analysis has been validated by
comparing the results of the present study, for the radiative flux between two
opposing infinite black parallel plates under radiative equilibrium, against the
exact results presented by Ozisik (1973). The deviation in results is less than 0.1
percent, lending support to the accuracy of the radiative transfer analysis.

To investigate the effect of anisotropic radiation scattering in the total heat
transfer we consider a linear anisotropic scattering (LAS) model. Including any
kind of scattering model is however quite straightforward. The single-
scattering phase function for the LAS model is given as:

P(p) =1+ arpy

1.6

v Exact

DOM
12
q4 08 |-
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04 |
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Figure 2.
Comparison of heat flux
results
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Figure 3.

Effect of scattering
phase functions and
albedo

where 11, is cosine of the angle between the in-scattering and out-scattering
directions. @; = 0 represents isotropic scattering, @; = +1 indicates strong
forward scattering, whereas a; = -1 corresponds to strong backward
scattering. Forward scattering enhances the radiative transfer in the direction
from the plate to fluid, while backward scattering retards the transfer. The slab
phase function p(u, 1) required in equations (16)-(17) can be easily obtained
from p(p,) Modest, 1993).

The variation of Nu/Re"? with the dimensionless axial distance ¢ for various
phase functions and different scattering albedo values is shown in Figure 3.
Nu/Re"? is seen to increase with & because of the pronounced radiation effects
at higher & The effect of degree of anisotropy a; is also demonstrated in
Figure 3. For a; = + 1, i.e. for strong forward scattering the increase in Nu/Re'?
over isotropic scattering is insignificant even at the low value of IV, where
radiation dominates over conduction. Strong backscattering (a; = — 1) also
affects only insignificant reduction in Nu/Re'?. Increasing scattering albedo
decreases the heat flux as observed from Figure 3. As w increases the heat flux
tends to be that of non-radiating flow in view of the increased decoupling
between the convective and radiative fluxes. The condition w = 1 yields the
least (and the same) heat flux for all scattering phase functions, in view of the
total decoupling of convective and radiative heat fluxes for this case. Specular
or diffuse reflection of radiation from the plate surface, even at higher reflection
rates, appears to have negligible impact on the heat flux as indicated by the
charts presented in Figure 4. The effect of emittance on heat flux is depicted in
Figure 5.
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Conclusion

Radiation interaction with forced laminar convection from a flat plate to an
absorbing, emitting and anisotropically scattering gray medium with the
surface of the plate reflecting radiation in diffuse-specular fashion is analyzed.
The radiative transfer equation is solved with the discrete ordinates method.
The partial differential system defining the governing dimensionless
momentum and energy equations is solved by a finite difference method.
Results are presented for the effects of degree of anisotropy in scattering,

Radiation in
boundary layer
flow

539

Figure 4.
Effect of nature of
reflection from the plate

Figure 5.
Effect of emittance
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scattering albedo, emittance, and the nature of surface reflection on the total
heat flux from the plate to the fluid. The following conclusions are drawn from
the analysis:

« Degree of radiation scattering anisotropy does not affect the total heat
flux from the plate to the fluid significantly.

- Effect of nature of radiation reflection from the surface of the plate is
negligible.
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